Minor theory for surfaces and divides of maximal signature

Pierre Dehornoy

Université de Grenoble / Institut Poncelet, Moscow

Embedded graphs, Saint-Petersburg October 28th, 2014 joint with Sebatian Baader (Bern)

Definition

Definition

A partially ordered set is a set S together with an order \leq that is transitive ($a \leq b, b \leq c \implies a \leq c$), reflexive ($a \leq a$), and anti-symmetric ($a \leq b, b \leq a \implies a = b$).

• (\mathbb{N},\leqslant)

Definition

- (\mathbb{N}, \leqslant)
- (ℕ, |)

Definition

- (\mathbb{N},\leqslant)
- (ℕ, |)
- (rooted embedded trees, \leq^{plan})

Definition

- (\mathbb{N},\leqslant)
- (ℕ, |)
- (rooted embedded trees, \leq^{plan})
- (abstract graphs, \leq^{gr})

If (S, \leqslant) is a poset, a property P is *minor-closed* if

 $\mathfrak{u}\leqslant \nu, P(\nu)\implies P(\mathfrak{u}).$

If (S, \leqslant) is a poset, a property P is *minor-closed* if

$$\mathfrak{u} \leqslant \mathfrak{v}, \mathsf{P}(\mathfrak{v}) \implies \mathsf{P}(\mathfrak{u}).$$

If there is no infinite descending chain, then the set $\{u \in S | \neg P(u)\}$ is a union of cones, defined by *minimal elements*.

If (S, \leqslant) is a poset, a property P is *minor-closed* if

$$\mathfrak{u} \leqslant \mathfrak{v}, \mathsf{P}(\mathfrak{v}) \implies \mathsf{P}(\mathfrak{u}).$$

If there is no infinite descending chain, then the set $\{u \in S | \neg P(u)\}$ is a union of cones, defined by *minimal elements*. The set of minimal elements forms an *antichain*.

If (S, \leqslant) is a poset, a property P is *minor-closed* if

$$\mathfrak{u} \leqslant \mathfrak{v}, \mathsf{P}(\mathfrak{v}) \implies \mathsf{P}(\mathfrak{u}).$$

If there is no infinite descending chain, then the set $\{u \in S | \neg P(u)\}$ is a union of cones, defined by *minimal elements*. The set of minimal elements forms an *antichain*. Example:

Theorem (Pontryagin-Kuratowski, 1930)

A graph is planar if and only if it does not contain K_5 nor $K_{3,3}$ as a graph-minor.

Robertson-Seymour Theorem

If P is minor-closed, the set of \neg P-minimal elements forms an *antichain*.

 (S, \leqslant) is a *well-quasi-ordering (wqo)* if there is no infinite descending chain and no infinite antichain.

Proposition

If (S, \leq) is a wqo, then every minor-closed property is characterized by a finite number of prohibited minors.

Robertson-Seymour Theorem

If P is minor-closed, the set of \neg P-minimal elements forms an *antichain*.

 (S, \leqslant) is a *well-quasi-ordering (wqo)* if there is no infinite descending chain and no infinite antichain.

Proposition

If (S, \leq) is a wqo, then every minor-closed property is characterized by a finite number of prohibited minors.

Theorem (Kruskal, 1960)

(rooted trees, \leq^{plan}) is a wqo.

Robertson-Seymour Theorem

If P is minor-closed, the set of \neg P-minimal elements forms an *antichain*.

 (S, \leqslant) is a *well-quasi-ordering (wqo)* if there is no infinite descending chain and no infinite antichain.

Proposition

If (S, \leq) is a wqo, then every minor-closed property is characterized by a finite number of prohibited minors.

Theorem (Kruskal, 1960)

(rooted trees, \leq^{plan}) is a wqo.

Theorem (Robertson–Seymour, 1983-2004)

(abstract graphs, \leq^{gr}) is a wqo.

 $Surf = \{ embedded \ surfaces \ in \ \mathbb{S}^3 \}$

 $Surf = \{ embedded \ surfaces \ in \ \mathbb{S}^3 \} / \ isotopy \}$

(SeifertView, Jarke Van Wijk & Arjeh Cohen)

 $Surf = \left\{ embedded \text{ surfaces in } \mathbb{S}^3 \right\} / \text{ isotopy}$

(SeifertView, Jarke Van Wijk & Arjeh Cohen)

$$\begin{array}{l} \mathsf{S}' \leqslant^{\mathsf{surf}} \mathsf{S} \text{ if } \mathsf{S}' \text{ incompressible subsurface of } \mathsf{S} \\ \left(\Leftrightarrow \pi_1(\mathsf{S}') \hookrightarrow \pi_1(\mathsf{S}) \right) \end{array}$$

 $Surf = \left\{ embedded \text{ surfaces in } \mathbb{S}^3 \right\} / \text{ isotopy}$

(SeifertView, Jarke Van Wijk & Arjeh Cohen)

$$\begin{array}{l} S' \leqslant^{\texttt{surf}} S \text{ if } S' \text{ incompressible subsurface of } S\\ (\Leftrightarrow \pi_1(S') \hookrightarrow \pi_1(S))\\ (\texttt{Surf}, \leqslant^{\texttt{surf}}) \text{ IS NOT a wqo.} \end{array}$$

Divides

Definition (A'Campo)

A *divide* is a generic embedding of a union of segments and circles in the disc.

Divide surfaces

Planar minors

Divide surfaces

 $T^1D^2\simeq D^2\times \mathbb{S}^1$

Divide surfaces

Planar minors

Divide surfaces

$$\begin{array}{l} T^1D^2\simeq D^2\times \mathbb{S}^1\\ T^1D^2/\partial D^2\simeq \mathbb{S}^3 \end{array}$$

Planar minors

Divide surfaces

 $\begin{array}{l} T^1D^2\simeq D^2\times \mathbb{S}^1\\ T^1D^2/\partial D^2\simeq \mathbb{S}^3 \end{array}$

Planar minors

Divide surfaces

 $\begin{array}{l} T^1D^2\simeq D^2\times \mathbb{S}^1\\ T^1D^2/\partial D^2\simeq \mathbb{S}^3 \end{array}$

Theorem (A'Campo)

Divide surfaces are fiber surfaces.

Divide surfaces

 $SDiv = \{ fiber \ surfaces \ of \ divides \}.$

```
Theorem (Baader–D, 2012)
```

 $(SDiv, \leq^{surf})$ is a wqo.

Divide surfaces

 $Div = \{fiber \ surfaces \ of \ divides\}.$

Theorem (Baader–D, 2012)

 $(SDiv, \leq^{surf})$ is a wqo.

Example:

Theorem (Baader–D, 2012)

A divide surface S satisfies $sign(S) = b_1(S)$ if and only if it does not contain S(Q) nor S(X) as a surface-minor.

Proof: divide minors

Proof: divide minors

Lemma

If D' is a divide-minor of D, then S(D') is a surface-minor of S(D).

Lemma

If G' is a planar-minor of G, then $di\nu(G')$ is a divide-minor of $di\nu(G).$

Proposition (Baader-D)

 $(planar graphs, \leq^{plan})$ is a wqo.

Proposition (Baader–D)

 $(planar graphs, \leq^{plan})$ is a wqo.

If G' is a planar-minor of G, then div(G') is a divide-minor of div(G). If div(G') is a divide-minor of div(G), then S(div(G')) is a surface-minor of S(div(G)). \leqslant^{plan} is a wqo

Theorem (Tutte)

A planar graph is a "tree" of 3-connected graphs.

 $\leqslant^{\texttt{plan}}$ is a wqo

Theorem (Tutte)

• A planar graph is a "tree" of 3-connected graphs.

 \leqslant^{plan} is a wqo

Theorem (Tutte)

- A planar graph is a "tree" of 3-connected graphs.
- 3-connected graphs embed uniquely into the 3-sphere (up to reflexion).

 \leqslant^{plan} is a wqo

Theorem (Tutte)

- A planar graph is a "tree" of 3-connected graphs.
- 3-connected graphs embed uniquely into the 3-sphere (up to reflexion).

Theorem (Kruskal, 1960)

(rooted trees, \leq^{plan}) is a wqo.

Theorem (Robertson–Seymour)

 $(graphs, \leq^{gr})$ is a wqo.

Questions

Which classes of surfaces are wqo? fiber surfaces of positive braids? stronly-quasi positive surfaces?